扣子智能体
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1352 lines
40 KiB

/*
* Copyright 2025 coze-dev Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package llm
import (
"context"
"errors"
"fmt"
"io"
"strconv"
"strings"
"github.com/cloudwego/eino/callbacks"
"github.com/cloudwego/eino/components/model"
"github.com/cloudwego/eino/components/prompt"
"github.com/cloudwego/eino/components/tool"
"github.com/cloudwego/eino/compose"
"github.com/cloudwego/eino/flow/agent/react"
"github.com/cloudwego/eino/schema"
callbacks2 "github.com/cloudwego/eino/utils/callbacks"
"golang.org/x/exp/maps"
"github.com/coze-dev/coze-studio/backend/api/model/crossdomain/knowledge"
crossmodel "github.com/coze-dev/coze-studio/backend/api/model/crossdomain/modelmgr"
"github.com/coze-dev/coze-studio/backend/api/model/crossdomain/plugin"
workflowModel "github.com/coze-dev/coze-studio/backend/api/model/crossdomain/workflow"
workflow3 "github.com/coze-dev/coze-studio/backend/api/model/workflow"
crossknowledge "github.com/coze-dev/coze-studio/backend/crossdomain/contract/knowledge"
crossmessage "github.com/coze-dev/coze-studio/backend/crossdomain/contract/message"
crossmodelmgr "github.com/coze-dev/coze-studio/backend/crossdomain/contract/modelmgr"
crossplugin "github.com/coze-dev/coze-studio/backend/crossdomain/contract/plugin"
"github.com/coze-dev/coze-studio/backend/domain/workflow"
"github.com/coze-dev/coze-studio/backend/domain/workflow/entity"
"github.com/coze-dev/coze-studio/backend/domain/workflow/entity/vo"
"github.com/coze-dev/coze-studio/backend/domain/workflow/internal/canvas/convert"
"github.com/coze-dev/coze-studio/backend/domain/workflow/internal/execute"
"github.com/coze-dev/coze-studio/backend/domain/workflow/internal/nodes"
schema2 "github.com/coze-dev/coze-studio/backend/domain/workflow/internal/schema"
"github.com/coze-dev/coze-studio/backend/infra/contract/modelmgr"
"github.com/coze-dev/coze-studio/backend/pkg/ctxcache"
"github.com/coze-dev/coze-studio/backend/pkg/lang/ptr"
"github.com/coze-dev/coze-studio/backend/pkg/lang/slices"
"github.com/coze-dev/coze-studio/backend/pkg/logs"
"github.com/coze-dev/coze-studio/backend/pkg/safego"
"github.com/coze-dev/coze-studio/backend/pkg/sonic"
"github.com/coze-dev/coze-studio/backend/types/errno"
)
type contextKey string
const chatHistoryKey contextKey = "chatHistory"
type Format int
const (
FormatText Format = iota
FormatMarkdown
FormatJSON
)
const (
jsonPromptFormat = `
Strictly reply in valid JSON format.
- Ensure the output strictly conforms to the JSON schema below
- Do not include explanations, comments, or any text outside the JSON.
Here is the output JSON schema:
'''
%s
'''
`
markdownPrompt = `
Strictly reply in valid Markdown format.
- For headings, use number signs (#).
- For list items, start with dashes (-).
- To emphasize text, wrap it with asterisks (*).
- For code or commands, surround them with backticks (` + "`" + `).
- For quoted text, use greater than signs (>).
- For links, wrap the text in square brackets [], followed by the URL in parentheses ().
- For images, use square brackets [] for the alt text, followed by the image URL in parentheses ().
`
)
const (
ReasoningOutputKey = "reasoning_content"
)
const knowledgeUserPromptTemplate = `根据引用的内容回答问题:
1.如果引用的内容里面包含 <img src=""> 的标签, 标签里的 src 字段表示图片地址, 需要在回答问题的时候展示出去, 输出格式为"![图片名称](图片地址)" 。
2.如果引用的内容不包含 <img src=""> 的标签, 你回答问题时不需要展示图片 。
例如:
如果内容为<img src="https://example.com/image.jpg">一只小猫,你的输出应为:![一只小猫](https://example.com/image.jpg)。
如果内容为<img src="https://example.com/image1.jpg">一只小猫 和 <img src="https://example.com/image2.jpg">一只小狗 和 <img src="https://example.com/image3.jpg">一只小牛,你的输出应为:![一只小猫](https://example.com/image1.jpg) 和 ![一只小狗](https://example.com/image2.jpg) 和 ![一只小牛](https://example.com/image3.jpg)
you can refer to the following content and do relevant searches to improve:
---
%s
question is:
`
const knowledgeIntentPrompt = `
# 角色:
你是一个知识库意图识别AI Agent。
## 目标:
- 按照「系统提示词」、用户需求、最新的聊天记录选择应该使用的知识库。
## 工作流程:
1. 分析「系统提示词」以确定用户的具体需求。
2. 如果「系统提示词」明确指明了要使用的知识库,则直接返回这些知识库,只输出它们的knowledge_id,不需要再判断用户的输入
3. 检查每个知识库的knowledge_name和knowledge_description,以了解它们各自的功能。
4. 根据用户需求,选择最符合的知识库。
5. 如果找到一个或多个合适的知识库,输出它们的knowledge_id。如果没有合适的知识库,输出0。
## 约束:
- 严格按照「系统提示词」和用户的需求选择知识库。「系统提示词」的优先级大于用户的需求
- 如果有多个合适的知识库,将它们的knowledge_id用英文逗号连接后输出。
- 输出必须仅为knowledge_id或0,不得包括任何其他内容或解释,不要在id后面输出知识库名称。
## 输出示例
123,456
## 输出格式:
输出应该是一个纯数字或者由英文逗号连接的数字序列,具体取决于选择的知识库数量。不应包含任何其他文本或格式。
## 知识库列表如下
%s
## 「系统提示词」如下
%s
`
const (
knowledgeTemplateKey = "knowledge_template"
knowledgeChatModelKey = "knowledge_chat_model"
knowledgeLambdaKey = "knowledge_lambda"
knowledgeUserPromptTemplateKey = "knowledge_user_prompt_prefix"
templateNodeKey = "template"
llmNodeKey = "llm"
reactGraphName = "workflow_llm_react_agent"
outputConvertNodeKey = "output_convert"
)
type NoReCallReplyMode int64
const (
NoReCallReplyModeOfDefault NoReCallReplyMode = 0
NoReCallReplyModeOfCustomize NoReCallReplyMode = 1
)
type RetrievalStrategy struct {
RetrievalStrategy *knowledge.RetrievalStrategy
NoReCallReplyMode NoReCallReplyMode
NoReCallReplyCustomizePrompt string
}
type KnowledgeRecallConfig struct {
ChatModel model.BaseChatModel
RetrievalStrategy *RetrievalStrategy
SelectedKnowledgeDetails []*knowledge.KnowledgeDetail
}
type Config struct {
SystemPrompt string
UserPrompt string
OutputFormat Format
LLMParams *crossmodel.LLMParams
FCParam *vo.FCParam
BackupLLMParams *crossmodel.LLMParams
ChatHistorySetting *vo.ChatHistorySetting
AssociateStartNodeUserInputFields map[string]struct{}
}
func (c *Config) Adapt(_ context.Context, n *vo.Node, _ ...nodes.AdaptOption) (*schema2.NodeSchema, error) {
ns := &schema2.NodeSchema{
Key: vo.NodeKey(n.ID),
Type: entity.NodeTypeLLM,
Name: n.Data.Meta.Title,
Configs: c,
}
param := n.Data.Inputs.LLMParam
if param == nil {
return nil, fmt.Errorf("llm node's llmParam is nil")
}
bs, _ := sonic.Marshal(param)
llmParam := make(vo.LLMParam, 0)
if err := sonic.Unmarshal(bs, &llmParam); err != nil {
return nil, err
}
convertedLLMParam, err := llmParamsToLLMParam(llmParam)
if err != nil {
return nil, err
}
c.LLMParams = convertedLLMParam
c.SystemPrompt = convertedLLMParam.SystemPrompt
c.UserPrompt = convertedLLMParam.Prompt
if convertedLLMParam.EnableChatHistory {
c.ChatHistorySetting = &vo.ChatHistorySetting{
EnableChatHistory: true,
ChatHistoryRound: convertedLLMParam.ChatHistoryRound,
}
}
var resFormat Format
switch convertedLLMParam.ResponseFormat {
case crossmodel.ResponseFormatText:
resFormat = FormatText
case crossmodel.ResponseFormatMarkdown:
resFormat = FormatMarkdown
case crossmodel.ResponseFormatJSON:
resFormat = FormatJSON
default:
return nil, fmt.Errorf("unsupported response format: %d", convertedLLMParam.ResponseFormat)
}
c.OutputFormat = resFormat
if err = convert.SetInputsForNodeSchema(n, ns); err != nil {
return nil, err
}
if err = convert.SetOutputTypesForNodeSchema(n, ns); err != nil {
return nil, err
}
if resFormat == FormatJSON {
if len(ns.OutputTypes) == 1 {
for _, v := range ns.OutputTypes {
if v.Type == vo.DataTypeString {
resFormat = FormatText
break
}
}
} else if len(ns.OutputTypes) == 2 {
if _, ok := ns.OutputTypes[ReasoningOutputKey]; ok {
for k, v := range ns.OutputTypes {
if k != ReasoningOutputKey && v.Type == vo.DataTypeString {
resFormat = FormatText
break
}
}
}
}
}
if resFormat == FormatJSON {
ns.StreamConfigs = &schema2.StreamConfig{
CanGeneratesStream: false,
}
} else {
ns.StreamConfigs = &schema2.StreamConfig{
CanGeneratesStream: true,
}
}
if n.Data.Inputs.LLM != nil && n.Data.Inputs.FCParam != nil {
c.FCParam = n.Data.Inputs.FCParam
}
if se := n.Data.Inputs.SettingOnError; se != nil {
if se.Ext != nil && len(se.Ext.BackupLLMParam) > 0 {
var backupLLMParam vo.SimpleLLMParam
if err = sonic.UnmarshalString(se.Ext.BackupLLMParam, &backupLLMParam); err != nil {
return nil, err
}
backupModel, err := simpleLLMParamsToLLMParams(backupLLMParam)
if err != nil {
return nil, err
}
c.BackupLLMParams = backupModel
}
}
c.AssociateStartNodeUserInputFields = make(map[string]struct{})
for _, info := range ns.InputSources {
if len(info.Path) == 1 && info.Source.Ref != nil && info.Source.Ref.FromNodeKey == entity.EntryNodeKey {
if compose.FromFieldPath(info.Source.Ref.FromPath).Equals(compose.FromField(vo.UserInputKey)) {
c.AssociateStartNodeUserInputFields[info.Path[0]] = struct{}{}
}
}
}
return ns, nil
}
func llmParamsToLLMParam(params vo.LLMParam) (*crossmodel.LLMParams, error) {
p := &crossmodel.LLMParams{}
for _, param := range params {
switch param.Name {
case "temperature":
strVal := param.Input.Value.Content.(string)
floatVal, err := strconv.ParseFloat(strVal, 64)
if err != nil {
return nil, err
}
p.Temperature = &floatVal
case "maxTokens":
strVal := param.Input.Value.Content.(string)
intVal, err := strconv.Atoi(strVal)
if err != nil {
return nil, err
}
p.MaxTokens = intVal
case "responseFormat":
strVal := param.Input.Value.Content.(string)
int64Val, err := strconv.ParseInt(strVal, 10, 64)
if err != nil {
return nil, err
}
p.ResponseFormat = crossmodel.ResponseFormat(int64Val)
case "modleName":
strVal := param.Input.Value.Content.(string)
p.ModelName = strVal
case "modelType":
strVal := param.Input.Value.Content.(string)
int64Val, err := strconv.ParseInt(strVal, 10, 64)
if err != nil {
return nil, err
}
p.ModelType = int64Val
case "prompt":
strVal := param.Input.Value.Content.(string)
p.Prompt = strVal
case "enableChatHistory":
boolVar := param.Input.Value.Content.(bool)
p.EnableChatHistory = boolVar
case "systemPrompt":
strVal := param.Input.Value.Content.(string)
p.SystemPrompt = strVal
case "chatHistoryRound":
strVal := param.Input.Value.Content.(string)
int64Val, err := strconv.ParseInt(strVal, 10, 64)
if err != nil {
return nil, err
}
p.ChatHistoryRound = int64Val
case "generationDiversity", "frequencyPenalty", "presencePenalty":
// do nothing
case "topP":
strVal := param.Input.Value.Content.(string)
floatVar, err := strconv.ParseFloat(strVal, 64)
if err != nil {
return nil, err
}
p.TopP = &floatVar
default:
logs.Warnf("encountered unknown param when converting LLM Params, name= %s, "+
"value= %v", param.Name, param.Input.Value.Content)
}
}
return p, nil
}
func simpleLLMParamsToLLMParams(params vo.SimpleLLMParam) (*crossmodel.LLMParams, error) {
p := &crossmodel.LLMParams{}
p.ModelName = params.ModelName
p.ModelType = params.ModelType
p.Temperature = &params.Temperature
p.MaxTokens = params.MaxTokens
p.TopP = &params.TopP
p.ResponseFormat = params.ResponseFormat
p.SystemPrompt = params.SystemPrompt
return p, nil
}
func getReasoningContent(message *schema.Message) string {
return message.ReasoningContent
}
func (c *Config) Build(ctx context.Context, ns *schema2.NodeSchema, _ ...schema2.BuildOption) (any, error) {
var (
err error
chatModel, fallbackM model.BaseChatModel
info, fallbackI *modelmgr.Model
modelWithInfo ModelWithInfo
tools []tool.BaseTool
toolsReturnDirectly map[string]bool
knowledgeRecallConfig *KnowledgeRecallConfig
)
chatModel, info, err = crossmodelmgr.DefaultSVC().GetModel(ctx, c.LLMParams)
if err != nil {
return nil, err
}
exceptionConf := ns.ExceptionConfigs
if exceptionConf != nil && exceptionConf.MaxRetry > 0 {
backupModelParams := c.BackupLLMParams
if backupModelParams != nil {
fallbackM, fallbackI, err = crossmodelmgr.DefaultSVC().GetModel(ctx, backupModelParams)
if err != nil {
return nil, err
}
}
}
if fallbackM == nil {
modelWithInfo = NewModel(chatModel, info)
} else {
modelWithInfo = NewModelWithFallback(chatModel, fallbackM, info, fallbackI)
}
fcParams := c.FCParam
if fcParams != nil {
if fcParams.WorkflowFCParam != nil {
for _, wf := range fcParams.WorkflowFCParam.WorkflowList {
wfIDStr := wf.WorkflowID
wfID, err := strconv.ParseInt(wfIDStr, 10, 64)
if err != nil {
return nil, fmt.Errorf("invalid workflow id: %s", wfIDStr)
}
workflowToolConfig := vo.WorkflowToolConfig{}
if wf.FCSetting != nil {
workflowToolConfig.InputParametersConfig = wf.FCSetting.RequestParameters
workflowToolConfig.OutputParametersConfig = wf.FCSetting.ResponseParameters
}
locator := workflowModel.FromDraft
if wf.WorkflowVersion != "" {
locator = workflowModel.FromSpecificVersion
}
wfTool, err := workflow.GetRepository().WorkflowAsTool(ctx, vo.GetPolicy{
ID: wfID,
QType: locator,
Version: wf.WorkflowVersion,
}, workflowToolConfig)
if err != nil {
return nil, err
}
tools = append(tools, wfTool)
if wfTool.TerminatePlan() == vo.UseAnswerContent {
if toolsReturnDirectly == nil {
toolsReturnDirectly = make(map[string]bool)
}
toolInfo, err := wfTool.Info(ctx)
if err != nil {
return nil, err
}
toolsReturnDirectly[toolInfo.Name] = true
}
}
}
if fcParams.PluginFCParam != nil {
pluginToolsInvokableReq := make(map[int64]*plugin.ToolsInvokableRequest)
for _, p := range fcParams.PluginFCParam.PluginList {
pid, err := strconv.ParseInt(p.PluginID, 10, 64)
if err != nil {
return nil, fmt.Errorf("invalid plugin id: %s", p.PluginID)
}
toolID, err := strconv.ParseInt(p.ApiId, 10, 64)
if err != nil {
return nil, fmt.Errorf("invalid plugin id: %s", p.PluginID)
}
var (
requestParameters []*workflow3.APIParameter
responseParameters []*workflow3.APIParameter
)
if p.FCSetting != nil {
requestParameters = p.FCSetting.RequestParameters
responseParameters = p.FCSetting.ResponseParameters
}
if req, ok := pluginToolsInvokableReq[pid]; ok {
req.ToolsInvokableInfo[toolID] = &plugin.ToolsInvokableInfo{
ToolID: toolID,
RequestAPIParametersConfig: requestParameters,
ResponseAPIParametersConfig: responseParameters,
}
} else {
pluginToolsInfoRequest := &plugin.ToolsInvokableRequest{
PluginEntity: plugin.PluginEntity{
PluginID: pid,
PluginVersion: ptr.Of(p.PluginVersion),
},
ToolsInvokableInfo: map[int64]*plugin.ToolsInvokableInfo{
toolID: {
ToolID: toolID,
RequestAPIParametersConfig: requestParameters,
ResponseAPIParametersConfig: responseParameters,
},
},
IsDraft: p.IsDraft,
}
pluginToolsInvokableReq[pid] = pluginToolsInfoRequest
}
}
inInvokableTools := make([]tool.BaseTool, 0, len(fcParams.PluginFCParam.PluginList))
for _, req := range pluginToolsInvokableReq {
toolMap, err := crossplugin.DefaultSVC().GetPluginInvokableTools(ctx, req)
if err != nil {
return nil, err
}
for _, t := range toolMap {
inInvokableTools = append(inInvokableTools, newInvokableTool(t))
}
}
if len(inInvokableTools) > 0 {
tools = append(tools, inInvokableTools...)
}
}
if fcParams.KnowledgeFCParam != nil && len(fcParams.KnowledgeFCParam.KnowledgeList) > 0 {
kwChatModel := workflow.GetRepository().GetKnowledgeRecallChatModel()
if kwChatModel == nil {
return nil, fmt.Errorf("workflow builtin chat model for knowledge recall not configured")
}
setting := fcParams.KnowledgeFCParam.GlobalSetting
knowledgeRecallConfig = &KnowledgeRecallConfig{
ChatModel: kwChatModel,
}
searchType, err := toRetrievalSearchType(setting.SearchMode)
if err != nil {
return nil, err
}
knowledgeRecallConfig.RetrievalStrategy = &RetrievalStrategy{
RetrievalStrategy: &knowledge.RetrievalStrategy{
TopK: ptr.Of(setting.TopK),
MinScore: ptr.Of(setting.MinScore),
SearchType: searchType,
EnableNL2SQL: setting.UseNL2SQL,
EnableQueryRewrite: setting.UseRewrite,
EnableRerank: setting.UseRerank,
},
NoReCallReplyMode: NoReCallReplyMode(setting.NoRecallReplyMode),
NoReCallReplyCustomizePrompt: setting.NoRecallReplyCustomizePrompt,
}
knowledgeIDs := make([]int64, 0, len(fcParams.KnowledgeFCParam.KnowledgeList))
for _, kw := range fcParams.KnowledgeFCParam.KnowledgeList {
kid, err := strconv.ParseInt(kw.ID, 10, 64)
if err != nil {
return nil, err
}
knowledgeIDs = append(knowledgeIDs, kid)
}
detailResp, err := crossknowledge.DefaultSVC().ListKnowledgeDetail(ctx,
&knowledge.ListKnowledgeDetailRequest{
KnowledgeIDs: knowledgeIDs,
})
if err != nil {
return nil, err
}
knowledgeRecallConfig.SelectedKnowledgeDetails = detailResp.KnowledgeDetails
}
}
g := compose.NewGraph[map[string]any, map[string]any](
compose.WithGenLocalState(func(ctx context.Context) (state llmState) {
return llmState{}
}))
var hasReasoning bool
format := c.OutputFormat
if format == FormatJSON {
if len(ns.OutputTypes) == 1 {
for _, v := range ns.OutputTypes {
if v.Type == vo.DataTypeString {
format = FormatText
break
}
}
} else if len(ns.OutputTypes) == 2 {
if _, ok := ns.OutputTypes[ReasoningOutputKey]; ok {
for k, v := range ns.OutputTypes {
if k != ReasoningOutputKey && v.Type == vo.DataTypeString {
format = FormatText
break
}
}
}
}
}
userPrompt := c.UserPrompt
switch format {
case FormatJSON:
jsonSchema, err := vo.TypeInfoToJSONSchema(ns.OutputTypes, nil)
if err != nil {
return nil, err
}
jsonPrompt := fmt.Sprintf(jsonPromptFormat, jsonSchema)
userPrompt = userPrompt + jsonPrompt
case FormatMarkdown:
userPrompt = userPrompt + markdownPrompt
case FormatText:
}
if knowledgeRecallConfig != nil {
err := injectKnowledgeTool(ctx, g, c.UserPrompt, knowledgeRecallConfig)
if err != nil {
return nil, err
}
userPrompt = fmt.Sprintf("{{%s}}%s", knowledgeUserPromptTemplateKey, userPrompt)
inputs := maps.Clone(ns.InputTypes)
inputs[knowledgeUserPromptTemplateKey] = &vo.TypeInfo{
Type: vo.DataTypeString,
}
sp := newPromptTpl(schema.System, c.SystemPrompt, inputs)
up := newPromptTpl(schema.User, userPrompt, inputs, withReservedKeys([]string{knowledgeUserPromptTemplateKey}), withAssociateUserInputFields(c.AssociateStartNodeUserInputFields))
template := newPrompts(sp, up, modelWithInfo)
templateWithChatHistory := newPromptsWithChatHistory(template, c.ChatHistorySetting)
_ = g.AddChatTemplateNode(templateNodeKey, templateWithChatHistory,
compose.WithStatePreHandler(func(ctx context.Context, in map[string]any, state llmState) (map[string]any, error) {
for k, v := range state {
in[k] = v
}
return in, nil
}))
_ = g.AddEdge(knowledgeLambdaKey, templateNodeKey)
} else {
sp := newPromptTpl(schema.System, c.SystemPrompt, ns.InputTypes)
up := newPromptTpl(schema.User, userPrompt, ns.InputTypes, withAssociateUserInputFields(c.AssociateStartNodeUserInputFields))
template := newPrompts(sp, up, modelWithInfo)
templateWithChatHistory := newPromptsWithChatHistory(template, c.ChatHistorySetting)
_ = g.AddChatTemplateNode(templateNodeKey, templateWithChatHistory)
_ = g.AddEdge(compose.START, templateNodeKey)
}
if len(tools) > 0 {
m, ok := modelWithInfo.(model.ToolCallingChatModel)
if !ok {
return nil, errors.New("requires a ToolCallingChatModel to use with tools")
}
reactConfig := react.AgentConfig{
ToolCallingModel: m,
ToolsConfig: compose.ToolsNodeConfig{Tools: tools},
ModelNodeName: agentModelName,
GraphName: reactGraphName,
}
if len(toolsReturnDirectly) > 0 {
reactConfig.ToolReturnDirectly = make(map[string]struct{}, len(toolsReturnDirectly))
for k := range toolsReturnDirectly {
reactConfig.ToolReturnDirectly[k] = struct{}{}
}
}
reactAgent, err := react.NewAgent(ctx, &reactConfig)
if err != nil {
return nil, err
}
agentNode, opts := reactAgent.ExportGraph()
opts = append(opts, compose.WithNodeName(reactGraphName))
_ = g.AddGraphNode(llmNodeKey, agentNode, opts...)
} else {
_ = g.AddChatModelNode(llmNodeKey, modelWithInfo)
}
_ = g.AddEdge(templateNodeKey, llmNodeKey)
var outputKey string
if format == FormatJSON {
iConvert := func(ctx context.Context, msg *schema.Message) (map[string]any, error) {
return jsonParse(ctx, msg.Content, ns.OutputTypes)
}
convertNode := compose.InvokableLambda(iConvert)
_ = g.AddLambdaNode(outputConvertNodeKey, convertNode)
} else {
if len(ns.OutputTypes) != 1 && len(ns.OutputTypes) != 2 {
panic("impossible")
}
for k, v := range ns.OutputTypes {
if v.Type != vo.DataTypeString {
panic("impossible")
}
if k == ReasoningOutputKey {
hasReasoning = true
} else {
outputKey = k
}
}
iConvert := func(_ context.Context, msg *schema.Message, _ ...struct{}) (map[string]any, error) {
out := map[string]any{outputKey: msg.Content}
if hasReasoning {
out[ReasoningOutputKey] = getReasoningContent(msg)
}
return out, nil
}
tConvert := func(_ context.Context, s *schema.StreamReader[*schema.Message], _ ...struct{}) (*schema.StreamReader[map[string]any], error) {
sr, sw := schema.Pipe[map[string]any](0)
safego.Go(ctx, func() {
reasoningDone := false
for {
msg, err := s.Recv()
if err != nil {
if err == io.EOF {
sw.Send(map[string]any{
outputKey: nodes.KeyIsFinished,
}, nil)
sw.Close()
return
}
sw.Send(nil, err)
sw.Close()
return
}
if hasReasoning {
reasoning := getReasoningContent(msg)
if len(reasoning) > 0 {
sw.Send(map[string]any{ReasoningOutputKey: reasoning}, nil)
}
}
if len(msg.Content) > 0 {
if !reasoningDone && hasReasoning {
reasoningDone = true
sw.Send(map[string]any{
ReasoningOutputKey: nodes.KeyIsFinished,
}, nil)
}
sw.Send(map[string]any{outputKey: msg.Content}, nil)
}
}
})
return sr, nil
}
convertNode, err := compose.AnyLambda(iConvert, nil, nil, tConvert)
if err != nil {
return nil, err
}
_ = g.AddLambdaNode(outputConvertNodeKey, convertNode)
}
_ = g.AddEdge(llmNodeKey, outputConvertNodeKey)
_ = g.AddEdge(outputConvertNodeKey, compose.END)
requireCheckpoint := c.RequireCheckpoint()
var compileOpts []compose.GraphCompileOption
if requireCheckpoint {
compileOpts = append(compileOpts, compose.WithCheckPointStore(workflow.GetRepository()))
}
compileOpts = append(compileOpts, compose.WithGraphName("workflow_llm_node_graph"))
r, err := g.Compile(ctx, compileOpts...)
if err != nil {
return nil, err
}
llm := &LLM{
r: r,
outputFormat: format,
requireCheckpoint: requireCheckpoint,
fullSources: ns.FullSources,
chatHistorySetting: c.ChatHistorySetting,
nodeKey: ns.Key,
outputKey: outputKey,
}
return llm, nil
}
func (c *Config) RequireCheckpoint() bool {
if c.FCParam != nil {
if c.FCParam.WorkflowFCParam != nil {
if len(c.FCParam.WorkflowFCParam.WorkflowList) > 0 {
return true
}
}
if c.FCParam.PluginFCParam != nil {
if len(c.FCParam.PluginFCParam.PluginList) > 0 {
return true
}
}
}
return false
}
func (c *Config) FieldStreamType(path compose.FieldPath, ns *schema2.NodeSchema,
sc *schema2.WorkflowSchema) (schema2.FieldStreamType, error) {
if !sc.RequireStreaming() {
return schema2.FieldNotStream, nil
}
if len(path) != 1 {
return schema2.FieldNotStream, nil
}
outputs := ns.OutputTypes
if len(outputs) != 1 && len(outputs) != 2 {
return schema2.FieldNotStream, nil
}
var outputKey string
for key, output := range outputs {
if output.Type != vo.DataTypeString {
return schema2.FieldNotStream, nil
}
if key != ReasoningOutputKey {
if len(outputKey) > 0 {
return schema2.FieldNotStream, nil
}
outputKey = key
}
}
field := path[0]
if field == ReasoningOutputKey || field == outputKey {
return schema2.FieldIsStream, nil
}
return schema2.FieldNotStream, nil
}
func (c *Config) ChatHistoryEnabled() bool {
return c.ChatHistorySetting != nil && c.ChatHistorySetting.EnableChatHistory
}
func (c *Config) ChatHistoryRounds() int64 {
if c.ChatHistorySetting == nil {
return 0
}
return c.ChatHistorySetting.ChatHistoryRound
}
func toRetrievalSearchType(s int64) (knowledge.SearchType, error) {
switch s {
case 0:
return knowledge.SearchTypeSemantic, nil
case 1:
return knowledge.SearchTypeHybrid, nil
case 20:
return knowledge.SearchTypeFullText, nil
default:
return 0, fmt.Errorf("invalid retrieval search type %v", s)
}
}
type LLM struct {
r compose.Runnable[map[string]any, map[string]any]
outputFormat Format
requireCheckpoint bool
fullSources map[string]*schema2.SourceInfo
chatHistorySetting *vo.ChatHistorySetting
nodeKey vo.NodeKey
outputKey string
}
const (
rawOutputKey = "llm_raw_output_%s"
warningKey = "llm_warning_%s"
)
func jsonParse(ctx context.Context, data string, schema_ map[string]*vo.TypeInfo) (map[string]any, error) {
data = nodes.ExtractJSONString(data)
var result map[string]any
err := sonic.UnmarshalString(data, &result)
if err != nil {
c := execute.GetExeCtx(ctx)
if c != nil {
logs.CtxErrorf(ctx, "failed to parse json: %v, data: %s", err, data)
rawOutputK := fmt.Sprintf(rawOutputKey, c.NodeCtx.NodeKey)
warningK := fmt.Sprintf(warningKey, c.NodeCtx.NodeKey)
ctxcache.Store(ctx, rawOutputK, data)
ctxcache.Store(ctx, warningK, vo.WrapWarn(errno.ErrLLMStructuredOutputParseFail, err))
return map[string]any{}, nil
}
return nil, err
}
r, ws, err := nodes.ConvertInputs(ctx, result, schema_)
if err != nil {
return nil, vo.WrapError(errno.ErrLLMStructuredOutputParseFail, err)
}
if ws != nil {
logs.CtxWarnf(ctx, "convert inputs warnings: %v", *ws)
}
return r, nil
}
type llmOptions struct {
toolWorkflowContainer *execute.StreamContainer
}
func WithToolWorkflowStreamContainer(container *execute.StreamContainer) nodes.NodeOption {
return nodes.WrapImplSpecificOptFn(func(o *llmOptions) {
o.toolWorkflowContainer = container
})
}
type llmState = map[string]any
const agentModelName = "agent_model"
func (l *LLM) prepare(ctx context.Context, _ map[string]any, opts ...nodes.NodeOption) (
composeOpts []compose.Option, resumingEvent *entity.InterruptEvent, err error) {
c := execute.GetExeCtx(ctx)
if c != nil {
resumingEvent = c.NodeCtx.ResumingEvent
}
if c != nil && c.RootCtx.ResumeEvent != nil {
// check if we are not resuming, but previously interrupted. Interrupt immediately.
if resumingEvent == nil {
var previouslyInterrupted bool
err = compose.ProcessState(ctx, func(ctx context.Context, state nodes.IntermediateResultStore) error {
previousToolES := state.GetIntermediateResult(c.NodeKey)
previouslyInterrupted = len(previousToolES) > 0
return nil
})
if err != nil {
return
}
if previouslyInterrupted {
err = compose.InterruptAndRerun
return
}
}
}
if l.requireCheckpoint && c != nil {
checkpointID := fmt.Sprintf("%d_%s", c.RootCtx.RootExecuteID, c.NodeCtx.NodeKey)
composeOpts = append(composeOpts, compose.WithCheckPointID(checkpointID))
}
options := nodes.GetCommonOptions(&nodes.NodeOptions{}, opts...)
composeOpts = append(composeOpts, options.GetOptsForNested()...)
if resumingEvent != nil {
var (
resumeData string
allIEs map[string]int64
)
_ = compose.ProcessState(ctx, func(_ context.Context, state nodes.IntermediateResultStore) error {
existingIEs := state.GetIntermediateResult(l.nodeKey)
allIEs = make(map[string]int64, len(existingIEs))
for toolCallID, exeID := range existingIEs {
allIEs[toolCallID] = exeID.(int64)
}
delete(existingIEs, resumingEvent.ToolInterruptEvent.ToolCallID)
state.SetIntermediateResult(l.nodeKey, existingIEs)
return nil
})
_ = compose.ProcessState(ctx, func(ctx context.Context, state nodes.InterruptEventStore) error {
resumeData, _ = state.GetAndClearResumeData(c.NodeKey)
return nil
})
composeOpts = append(composeOpts, compose.WithToolsNodeOption(
compose.WithToolOption(
execute.WithResume(&entity.ResumeRequest{
ExecuteID: resumingEvent.ToolInterruptEvent.ExecuteID,
EventID: resumingEvent.ToolInterruptEvent.ID,
ResumeData: resumeData,
}, allIEs))))
chatModelHandler := callbacks2.NewHandlerHelper().ChatModel(&callbacks2.ModelCallbackHandler{
OnStart: func(ctx context.Context, runInfo *callbacks.RunInfo, input *model.CallbackInput) context.Context {
if runInfo.Name != agentModelName {
return ctx
}
// react agent loops back to chat model after resuming,
// pop the previous interrupt event immediately
ie, deleted, e := workflow.GetRepository().PopFirstInterruptEvent(ctx, c.RootExecuteID)
if e != nil {
logs.CtxErrorf(ctx, "failed to pop first interrupt event on react agent chatmodel start: %v", err)
return ctx
}
if !deleted {
logs.CtxErrorf(ctx, "failed to pop first interrupt event on react agent chatmodel start: not deleted")
return ctx
}
if ie.ID != resumingEvent.ID {
logs.CtxErrorf(ctx, "failed to pop first interrupt event on react agent chatmodel start, "+
"deleted ID: %d, resumingEvent ID: %d", ie.ID, resumingEvent.ID)
return ctx
}
c.RootCtx.ResumeEvent.Popped = true
return ctx
},
}).Handler()
composeOpts = append(composeOpts, compose.WithCallbacks(chatModelHandler))
}
if c != nil {
exeCfg := c.ExeCfg
composeOpts = append(composeOpts, compose.WithToolsNodeOption(compose.WithToolOption(execute.WithExecuteConfig(exeCfg))))
}
llmOpts := nodes.GetImplSpecificOptions(&llmOptions{}, opts...)
if container := llmOpts.toolWorkflowContainer; container != nil {
composeOpts = append(composeOpts, compose.WithToolsNodeOption(compose.WithToolOption(
execute.WithParentStreamContainer(container))))
}
var resolvedSources map[string]*schema2.SourceInfo
err = compose.ProcessState(ctx, func(_ context.Context, state nodes.DynamicStreamContainer) error {
resolvedSources = state.GetFullSources(l.nodeKey)
return nil
})
if err != nil {
return nil, nil, err
}
var nodeKey vo.NodeKey
if c != nil && c.NodeCtx != nil {
nodeKey = c.NodeCtx.NodeKey
}
ctxcache.Store(ctx, fmt.Sprintf(sourceKey, nodeKey), resolvedSources)
return composeOpts, resumingEvent, nil
}
func (l *LLM) handleInterrupt(ctx context.Context, err error, resumingEvent *entity.InterruptEvent) error {
info, ok := compose.ExtractInterruptInfo(err)
if !ok {
return err
}
info = info.SubGraphs["llm"] // 'llm' is the node key of the react agent
var extra any
for i := range info.RerunNodesExtra {
extra = info.RerunNodesExtra[i]
break
}
toolsNodeExtra, ok := extra.(*compose.ToolsInterruptAndRerunExtra)
if !ok {
return fmt.Errorf("llm rerun node extra type expected to be ToolsInterruptAndRerunExtra, actual: %T", extra)
}
id, err := workflow.GetRepository().GenID(ctx)
if err != nil {
return err
}
var (
previousInterruptedCallID string
highPriorityEvent *entity.ToolInterruptEvent
)
if resumingEvent != nil {
previousInterruptedCallID = resumingEvent.ToolInterruptEvent.ToolCallID
}
c := execute.GetExeCtx(ctx)
toolIEs := make([]*entity.ToolInterruptEvent, 0, len(toolsNodeExtra.RerunExtraMap))
for callID := range toolsNodeExtra.RerunExtraMap {
subIE, ok := toolsNodeExtra.RerunExtraMap[callID].(*entity.ToolInterruptEvent)
if !ok {
return fmt.Errorf("llm rerun node extra type expected to be ToolInterruptEvent, actual: %T", extra)
}
if subIE.ExecuteID == 0 {
subIE.ExecuteID = c.RootExecuteID
}
toolIEs = append(toolIEs, subIE)
if subIE.ToolCallID == previousInterruptedCallID {
highPriorityEvent = subIE
}
}
ie := &entity.InterruptEvent{
ID: id,
NodeKey: c.NodeKey,
NodeType: entity.NodeTypeLLM,
NodeTitle: c.NodeName,
NodeIcon: entity.NodeMetaByNodeType(entity.NodeTypeLLM).IconURL,
EventType: entity.InterruptEventLLM,
}
if highPriorityEvent != nil {
ie.ToolInterruptEvent = highPriorityEvent
} else {
ie.ToolInterruptEvent = toolIEs[0]
}
callID2ExeID := make(map[string]any, len(toolIEs))
for i := range toolIEs {
callID2ExeID[toolIEs[i].ToolCallID] = toolIEs[i].ExecuteID
}
_ = compose.ProcessState(ctx, func(ctx context.Context, state nodes.IntermediateResultStore) error {
previous := state.GetIntermediateResult(l.nodeKey)
for k, v := range previous {
if _, ok := callID2ExeID[k]; !ok {
callID2ExeID[k] = v
}
}
state.SetIntermediateResult(l.nodeKey, callID2ExeID)
return nil
})
return compose.NewInterruptAndRerunErr(ie)
}
func (l *LLM) Invoke(ctx context.Context, in map[string]any, opts ...nodes.NodeOption) (out map[string]any, err error) {
composeOpts, resumingEvent, err := l.prepare(ctx, in, opts...)
if err != nil {
return nil, err
}
out, err = l.r.Invoke(ctx, in, composeOpts...)
if err != nil {
err = l.handleInterrupt(ctx, err, resumingEvent)
return nil, err
}
return out, nil
}
func (l *LLM) Stream(ctx context.Context, in map[string]any, opts ...nodes.NodeOption) (out *schema.StreamReader[map[string]any], err error) {
composeOpts, resumingEvent, err := l.prepare(ctx, in, opts...)
if err != nil {
return nil, err
}
out, err = l.r.Stream(ctx, in, composeOpts...)
if err != nil {
err = l.handleInterrupt(ctx, err, resumingEvent)
return nil, err
}
return out, nil
}
func injectKnowledgeTool(_ context.Context, g *compose.Graph[map[string]any, map[string]any], userPrompt string, cfg *KnowledgeRecallConfig) error {
selectedKwDetails, err := sonic.MarshalString(cfg.SelectedKnowledgeDetails)
if err != nil {
return err
}
_ = g.AddChatTemplateNode(knowledgeTemplateKey,
prompt.FromMessages(schema.Jinja2,
schema.SystemMessage(fmt.Sprintf(knowledgeIntentPrompt, selectedKwDetails, userPrompt)),
), compose.WithStatePreHandler(func(ctx context.Context, in map[string]any, state llmState) (map[string]any, error) {
for k, v := range in {
state[k] = v
}
return in, nil
}))
_ = g.AddChatModelNode(knowledgeChatModelKey, cfg.ChatModel)
_ = g.AddLambdaNode(knowledgeLambdaKey, compose.InvokableLambda(func(ctx context.Context, input *schema.Message) (output map[string]any, err error) {
modelPredictionIDs := strings.Split(input.Content, ",")
selectKwIDs := slices.ToMap(cfg.SelectedKnowledgeDetails, func(e *knowledge.KnowledgeDetail) (string, int64) {
return strconv.Itoa(int(e.ID)), e.ID
})
recallKnowledgeIDs := make([]int64, 0)
for _, id := range modelPredictionIDs {
if kid, ok := selectKwIDs[id]; ok {
recallKnowledgeIDs = append(recallKnowledgeIDs, kid)
}
}
if len(recallKnowledgeIDs) == 0 {
return make(map[string]any), nil
}
docs, err := crossknowledge.DefaultSVC().Retrieve(ctx, &knowledge.RetrieveRequest{
Query: userPrompt,
KnowledgeIDs: recallKnowledgeIDs,
Strategy: cfg.RetrievalStrategy.RetrievalStrategy,
})
if err != nil {
return nil, err
}
if len(docs.RetrieveSlices) == 0 && cfg.RetrievalStrategy.NoReCallReplyMode == NoReCallReplyModeOfDefault {
return make(map[string]any), nil
}
sb := strings.Builder{}
if len(docs.RetrieveSlices) == 0 && cfg.RetrievalStrategy.NoReCallReplyMode == NoReCallReplyModeOfCustomize {
sb.WriteString("recall slice 1: \n")
sb.WriteString(cfg.RetrievalStrategy.NoReCallReplyCustomizePrompt + "\n")
}
for idx, msg := range docs.RetrieveSlices {
sb.WriteString(fmt.Sprintf("recall slice %d:\n", idx+1))
sb.WriteString(fmt.Sprintf("%s\n", msg.Slice.GetSliceContent()))
}
output = map[string]any{
knowledgeUserPromptTemplateKey: fmt.Sprintf(knowledgeUserPromptTemplate, sb.String()),
}
return output, nil
}))
_ = g.AddEdge(compose.START, knowledgeTemplateKey)
_ = g.AddEdge(knowledgeTemplateKey, knowledgeChatModelKey)
_ = g.AddEdge(knowledgeChatModelKey, knowledgeLambdaKey)
return nil
}
func (l *LLM) ToCallbackInput(ctx context.Context, input map[string]any) (
*nodes.StructuredCallbackInput, error) {
if l.chatHistorySetting == nil || !l.chatHistorySetting.EnableChatHistory {
return &nodes.StructuredCallbackInput{Input: input}, nil
}
var messages []*crossmessage.WfMessage
var scMessages []*schema.Message
var sectionID *int64
execCtx := execute.GetExeCtx(ctx)
if execCtx != nil {
messages = execCtx.ExeCfg.ConversationHistory
scMessages = execCtx.ExeCfg.ConversationHistorySchemaMessages
sectionID = execCtx.ExeCfg.SectionID
}
ret := map[string]any{
"chatHistory": []any{},
}
maps.Copy(ret, input)
if len(messages) == 0 {
return &nodes.StructuredCallbackInput{Input: ret}, nil
}
if sectionID != nil && messages[0].SectionID != *sectionID {
return &nodes.StructuredCallbackInput{Input: ret}, nil
}
maxRounds := int(l.chatHistorySetting.ChatHistoryRound)
if execCtx != nil && execCtx.ExeCfg.MaxHistoryRounds != nil {
maxRounds = min(int(*execCtx.ExeCfg.MaxHistoryRounds), maxRounds)
}
count := 0
startIdx := 0
for i := len(messages) - 1; i >= 0; i-- {
if messages[i].Role == schema.User {
count++
}
if count >= maxRounds {
startIdx = i
break
}
}
var historyMessages []any
for _, msg := range messages[startIdx:] {
content, err := nodes.ConvertMessageToString(ctx, msg)
if err != nil {
logs.CtxWarnf(ctx, "failed to convert message to string: %v", err)
continue
}
historyMessages = append(historyMessages, map[string]any{
"role": string(msg.Role),
"content": content,
})
}
ctxcache.Store(ctx, chatHistoryKey, scMessages[startIdx:])
ret["chatHistory"] = historyMessages
return &nodes.StructuredCallbackInput{Input: ret}, nil
}
func (l *LLM) ToCallbackOutput(ctx context.Context, output map[string]any) (*nodes.StructuredCallbackOutput, error) {
c := execute.GetExeCtx(ctx)
if c == nil {
return &nodes.StructuredCallbackOutput{
Output: output,
RawOutput: ptr.Of(output[l.outputKey].(string)),
}, nil
}
rawOutputK := fmt.Sprintf(rawOutputKey, c.NodeKey)
warningK := fmt.Sprintf(warningKey, c.NodeKey)
rawOutput, found := ctxcache.Get[string](ctx, rawOutputK)
if !found {
structuredOut := &nodes.StructuredCallbackOutput{
Output: output,
}
if _, ok := output[l.outputKey]; ok {
structuredOut.RawOutput = ptr.Of(output[l.outputKey].(string))
}
return structuredOut, nil
}
warning, found := ctxcache.Get[vo.WorkflowError](ctx, warningK)
if !found {
return &nodes.StructuredCallbackOutput{
Output: output,
RawOutput: ptr.Of(rawOutput),
}, nil
}
structuredOut := &nodes.StructuredCallbackOutput{
Output: output,
RawOutput: ptr.Of(rawOutput),
Error: warning,
}
reasoning, ok := output[ReasoningOutputKey]
if ok {
structuredOut.Extra = map[string]any{
ReasoningOutputKey: reasoning,
}
}
return structuredOut, nil
}