[system] # Load language from environment variable(It is set by the hook) language = "${env:DBGPT_LANG:-zh}" log_level = "INFO" api_keys = [] encrypt_key = "your_secret_key" # Server Configurations [service.web] host = "0.0.0.0" port = 5670 [service.web.database] type = "sqlite" path = "pilot/meta_data/dbgpt.db" [rag] chunk_size=1000 chunk_overlap=0 similarity_top_k=5 similarity_score_threshold=0.0 max_chunks_once_load=10 max_threads=1 rerank_top_k=3 [rag.storage] [rag.storage.vector] type = "chroma" persist_path = "pilot/data" [rag.storage.graph] type = "tugraph" host="127.0.0.1" port=7687 username="admin" password="73@TuGraph" # enable_summary="True" # community_topk=20 # community_score_threshold=0.3 # triplet_graph_enabled="True" # extract_topk=20 # document_graph_enabled="True" # knowledge_graph_chunk_search_top_size=20 # knowledge_graph_extraction_batch_size=20 # enable_similarity_search="True" # knowledge_graph_embedding_batch_size=20 # similarity_search_topk=5 # extract_score_threshold=0.7 # enable_text_search="True" # text2gql_model_enabled="True" # text2gql_model_name="qwen2.5:latest" # Model Configurations [models] [[models.llms]] name = "${env:LLM_MODEL_NAME:-gpt-4o}" provider = "${env:LLM_MODEL_PROVIDER:-proxy/openai}" api_base = "${env:OPENAI_API_BASE:-https://api.openai.com/v1}" api_key = "${env:OPENAI_API_KEY}" [[models.embeddings]] name = "${env:EMBEDDING_MODEL_NAME:-text-embedding-3-small}" provider = "${env:EMBEDDING_MODEL_PROVIDER:-proxy/openai}" api_url = "${env:EMBEDDING_MODEL_API_URL:-https://api.openai.com/v1/embeddings}" api_key = "${env:OPENAI_API_KEY}"